rsdb.net
当前位置:首页 >> 傅里叶级数的物理意义 >>

傅里叶级数的物理意义

傅里叶级数展开的实际意义: 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。 傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原...

傅立叶变换是以时间为自变量的信号和以频率为自变量的频谱函数之间的一种变换关系. 由于自变量时间和频率可以是连续的,也可以是离散的,因此可以组成几种不同的变换对 非周期的连续时间,连续频率-----傅里叶变换

那是非常有用。 从技术上讲,傅里叶级数以及发展出来的傅里叶变换,傅里叶分析,可以把一个时间域上的信号转化到频率域上(当然,也可以转回来),这在工科中的应用非常之多。 一个我想到的最简单的例子:一个连续的信号,我想转成离散的信号传...

傅里叶级数 Fourier series 一种特殊的三角级数。法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和...

傅立叶在论文中推导出著名的热传导方程 ,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。傅立叶级数(即三角级数)、傅立叶分析等理论均由此创始。 我是B吧大绅士

书上写的就很好理解埃比如说正弦波,余弦波这样的波,都是有周期的,也就是每过一个单位T他们的波形都会一样,如果一个任意波形图,我也可以认为他是有周期的,但是他的周期很长,从负无穷到正无穷这么长。所以我就把这个周期函数,分解成几个周...

一. 傅里叶级数的三角函数形式 设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即 其中A0/2称为直流分量或恒定分量;其余所有的项是...

一. 傅里叶级数的三角函数形式 设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即 其中A0/2称为直流分量或恒定分量;其余所有的项是...

因为傅里叶展开中,an的表达式分为n=0和n≠0两种情况,差了1/2,为了方便写公式,将a0写成a0/2便可以与n≠0的情况共用一个公式,也方便了后面复数正弦展开的推导。

傅里叶是法国数学家。 傅里叶发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。傅里叶级数(即三角级数)、傅立叶分析等理论均由此创始。 傅里叶变换用于将复杂信号分解为正弦或余弦三角函数的组合...

网站首页 | 网站地图
All rights reserved Powered by www.rsdb.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com